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1 Independence Properties and Construction of Brownian
Motion

1.1 Independence of sections of Brownian motion

Denote independence by ⊥. We know that (B(t2)− B(t1)) ⊥ (B(s2)− B(s2)) if [s1, s2] ∩
[t1, t2] = ∅. However, this does not directly imply that the random variables B(x) for
x ∈ [t1, t2] and B(y) for y ∈ [s1, s2] are independent. To prove this, we recall a consequence
of the π-λ lemma.

Lemma 1.1. Suppose Ti = σ(Ai), where Ai is a π-system for i = 1, 2. If A1 ⊥ A2 for all
A1 ∈ A1 and A2 ∈ A2, then T1 ⊥ T2.

Proposition 1.1. Let t1 < t2 < s1 < s2, and let f(a) = B(t1+a)−B(t1) for a ∈ [0, t2−t1]
and g(b) = B(s1+b)−B(s1) for b ∈ [0, s2−s1]. These two random functions are independent
of each other.

Remark 1.1. This is stronger than the fixed coordinates being independent because we
can say things like maxa f(a) ⊥ maxb g(b).

An important consequence of this is that for any t0, Brownian motion from 0 to t0 is
independent of what happens after t0.

Proposition 1.2. Let a > 0. Then B(at) ∼
√
aN(0, t).

1.2 Difficulty in construction of Brownian motion

How can we construct Brownian motion? Recall that constructing X ∼ U [0, 1] is difficult;
we have to talk about σ-fields and Lebesgue measure. A main difficulty is that not all sets
are measurable. So we need to find a decent collection of measurable sets of functions for
Brownian motion.
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If we want to construct random vectors (X,Y ), then we have to have F = σ(FX×FY ).
If we have a random sequence (X1, X2, . . . ), we have the σ-field σ(

⋃
Fi), but we need to

use the Kolmogorov extension theorem1 to construct P.
With the Poisson process, we only needed to look at jumping times to understand the

whole process. So we only need a sequence (T1, T2, T3, . . . ). So we do not run into the same
problem there we have with Brownian motion.

One idea (which does not work): Define B(t), t ∈ Q using the Kolmogorov extension
theorem and extend the values continuously. But it is difficult to show that lims∈Q→s0 B(s)
exists. So the correct idea is that we only get B(t) for t ∈ Z[12 ] first, where Z[12 ] = {m/2−n :
m,n ∈ Z} is the set of dyadic rational numbers.

Step 1: Using the Kolmogorov extension theorem, we can create a random list C(x)
for x ∈ Q2 such that

• C(0) = 0,

• separate intervals are independent,

• C(y)− C(x) ∼ N(0, y − x) for x, y ∈ Z[12 ].

Theorem 1.1. C(x) is uniformly continuous.

We will prove this next time. Using this, the next step is as follows.
Step 2: Let ψ : UCF (Z[12 ]) → C[0, 1] send C(x) to its unique continuous extension.

Then let PBM = PCM ◦ ψ−1.

1.3 Gaussian random vectors

Before we construct Brownian motion, we need to understand a notion related to Gaussian
random variables.

Definition 1.1. A Gaussian random vector is a random vector X = (X1, . . . , Xn) such
that for all y ∈ Rn, X · y is a Gaussian random variable.

The reason we care about this is that (B(1), B(2), B(3), . . . ) is a Gaussian random
vector (i.e. its finite dimensional projections are Gaussian random vectors).

Proposition 1.3. Let X be a Gaussian random vector with E[X] = 0. If E[XiXj ] = 0,
then Xi ⊥ Xj.

This does not hold for general random vectors and will be important for us in our
construction of Brownian motion.

1Kolmogorov created the foundations for probability theory at the young age of 33.
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