Math 275D Lecture 2 Notes

Daniel Raban

September 30, 2019

1 Independence Properties and Construction of Brownian Motion

1.1 Independence of sections of Brownian motion

Denote independence by \perp . We know that $(B(t_2) - B(t_1)) \perp (B(s_2) - B(s_2))$ if $[s_1, s_2] \cap [t_1, t_2] = \emptyset$. However, this does not directly imply that the random variables B(x) for $x \in [t_1, t_2]$ and B(y) for $y \in [s_1, s_2]$ are independent. To prove this, we recall a consequence of the π - λ lemma.

Lemma 1.1. Suppose $\mathcal{T}_i = \sigma(\mathcal{A}_i)$, where \mathcal{A}_i is a π -system for i = 1, 2. If $A_1 \perp A_2$ for all $A_1 \in \mathcal{A}_1$ and $A_2 \in \mathcal{A}_2$, then $\mathcal{T}_1 \perp \mathcal{T}_2$.

Proposition 1.1. Let $t_1 < t_2 < s_1 < s_2$, and let $f(a) = B(t_1+a) - B(t_1)$ for $a \in [0, t_2-t_1]$ and $g(b) = B(s_1+b) - B(s_1)$ for $b \in [0, s_2-s_1]$. These two random functions are independent of each other.

Remark 1.1. This is stronger than the fixed coordinates being independent because we can say things like $\max_a f(a) \perp \max_b g(b)$.

An important consequence of this is that for any t_0 , Brownian motion from 0 to t_0 is independent of what happens after t_0 .

Proposition 1.2. Let a > 0. Then $B(at) \sim \sqrt{a}N(0,t)$.

1.2 Difficulty in construction of Brownian motion

How can we construct Brownian motion? Recall that constructing $X \sim U[0, 1]$ is difficult; we have to talk about σ -fields and Lebesgue measure. A main difficulty is that not all sets are measurable. So we need to find a decent collection of measurable sets of functions for Brownian motion. If we want to construct random vectors (X, Y), then we have to have $\mathcal{F} = \sigma(\mathcal{F}_X \times \mathcal{F}_Y)$. If we have a random sequence (X_1, X_2, \ldots) , we have the σ -field $\sigma(\bigcup \mathcal{F}_i)$, but we need to use the Kolmogorov extension theorem¹ to construct \mathbb{P} .

With the Poisson process, we only needed to look at jumping times to understand the whole process. So we only need a sequence $(T_1, T_2, T_3, ...)$. So we do not run into the same problem there we have with Brownian motion.

One idea (which does not work): Define $B(t), t \in \mathbb{Q}$ using the Kolmogorov extension theorem and extend the values continuously. But it is difficult to show that $\lim_{s \in \mathbb{Q} \to s_0} B(s)$ exists. So the correct idea is that we only get B(t) for $t \in \mathbb{Z}[\frac{1}{2}]$ first, where $\mathbb{Z}[\frac{1}{2}] = \{m/2^{-n} : m, n \in \mathbb{Z}\}$ is the set of **dyadic rational numbers**.

Step 1: Using the Kolmogorov extension theorem, we can create a random list C(x) for $x \in \mathbb{Q}_2$ such that

- C(0) = 0,
- separate intervals are independent,
- $C(y) C(x) \sim N(0, y x)$ for $x, y \in \mathbb{Z}[\frac{1}{2}]$.

Theorem 1.1. C(x) is uniformly continuous.

We will prove this next time. Using this, the next step is as follows.

Step 2: Let $\psi : UCF(\mathbb{Z}[\frac{1}{2}]) \to C[0,1]$ send C(x) to its unique continuous extension. Then let $\mathbb{P}_{BM} = \mathbb{P}_{CM} \circ \psi^{-1}$.

1.3 Gaussian random vectors

Before we construct Brownian motion, we need to understand a notion related to Gaussian random variables.

Definition 1.1. A Gaussian random vector is a random vector $X = (X_1, \ldots, X_n)$ such that for all $y \in \mathbb{R}^n$, $X \cdot y$ is a Gaussian random variable.

The reason we care about this is that (B(1), B(2), B(3), ...) is a Gaussian random vector (i.e. its finite dimensional projections are Gaussian random vectors).

Proposition 1.3. Let X be a Gaussian random vector with $\mathbb{E}[X] = 0$. If $\mathbb{E}[X_iX_j] = 0$, then $X_i \perp X_j$.

This does not hold for general random vectors and will be important for us in our construction of Brownian motion.

¹Kolmogorov created the foundations for probability theory at the young age of 33.